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We study, for the case of the two-layer plane Couette flow, the effects of inertia on the recently found
instability due to insoluble surfactants. The insoluble-surfactant instability takes place even when inertia is
absent provided an interface or a free surface under a nonzero shear is laden with an insoluble surfactant.
Considering a normal mode of the streamwise wave numbera, the perturbation theory we construct is good for
anya provided the Reynolds number is correspondingly small. Inertia is responsible for some notable effects,
including the appearance of new regions of instability and stability. For long—and only for long—waves, the
following growth-rate additivity property for the inertia and interfacial instabilities holds: the growth rate
corresponding to some nonzero values of the Marangoni numberM and the Reynolds number Re is the sum of
two contributions, one corresponding to the same value ofM but zero Re, and the other corresponding to the
same(nonzero) Re but zeroM. This violation of the additivity property is in contrast to the case of a
surfactantless Couette flow where this property holds for all wave numbers. Thus these results provide a
counterexample to a conjecture that this additivity property is a universal principle. Among other results, when
the thiner layer is the less viscous one, there is a nonzero critical Marangoni numberMc for the onset of
instability; this(long-wave) thresholdMc grows from zero with the Reynolds number. Also, varying the ratio
of viscosities through certain characteristic values leads to changes in the topology of marginal-stability curves.
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I. INTRODUCTION

Two-layer flows including those containing surfactants
occur in many industrial and biomedical situations—such as
coating in photography(e.g., [1]), the closure of the small
airways of the lungs in which the air normally flows in con-
tact with the liquid lining the walls(e.g., [2,3]), lubricated
pipelining (e.g., [4]), and secondary oil recovery(e.g., [5]).
Clearly, stability of such flows is of considerable interest.

It is well known since the work of Yih[6] that the shear
flow of two fluids with different viscosities can be unstable.
In the leading order, the Stokes-flow approximation, the
channel flow is neutrally stable; the instability appears in the
next order(of the perturbative expansion in a small long-
wave parameter) which captures the effect of inertia(re-
flected in the dependence of the stability properties on the
Reynolds number). Thus, this instability is due to the effects
of inertia.

Recently, in Refs.[7] and [8], we found that even the
Stokes-flow(stable in the absence of surfactants) regimes
can be unstable if an insoluble surfactant is present and the
interfacial shear rates are nonzero(see also Ref.[9]). In con-
trast to the solely long-wave treatment of Yih[6] (which
required only simple polynomial eigenfunctions), but similar
to, e.g., Jain and Rukenstein[10], Ref. [8] noticed that the
spanwise structure of a normal mode having arbitrary
streamwise length is a finite linear combination of certain
functions(which are products of power and hyperbolic func-
tions). Hence, the originally differential-equation eigenvalue
problem is reduced to an algebraic one, and the growth rates
are found by solving a quadratic equation whose coefficients
are known elementary functions of the parameters. This al-
lowed us in Ref.[8] to readily investigate the Stokes-flow
stability properties for all wavelengths, over the entire pa-
rameter space.

Naturally, these(Stokes-flow) properties do not depend on
the Reynolds number. However, such a dependence should
be recovered when the next order(inertia) correction to the
Halpern and Frenkel[8] theory is considered. This implies
perturbative expansions in the small parameter which is pro-
portional to the dimensionless wave number and the Rey-
nolds number—each of which can be arbitrarily small or
large provided the other is appropriately restricted.(The lat-
ter circumstance is in contrast to Yih[6], who, to reiterate,
used expansions in the powers of a small-wave number pa-
rameter which did not involve the Reynolds number; the
latter, however, was restricted to be order 1 or less.) This is
how in the present communication we study the effects of
inertia on the inertialess instability found in Refs.[7] and[8].
For simplicity, we consider a plane Couette flow.(For a simi-
lar treatment of inertia effects in surfactantless Couette-flow
stability, see Albert and Charru[11]. They, however, used
expansions in a small parameter which was just the Reynolds
number and did not include the wave number factor.)

The stability of plane Couette flow of two fluids with no
surfactants has been extensively studied.(For an overview
and further references, see Refs.[4,11].) In contrast, there
has been only a small number of stability studies for flows
with insoluble surfactants. The earlier studies considered
mostly single-fluid flows down inclined or vertical planes
(e.g.,[12–15]; see also Ref.[16]). In such flows, the surface
value of the shear rate is zero. As was pointed out in Ref.[8],
this might be the reason for the absence of destabilization of
those flows by surfactants. Indeed, the results of that work
(along with Ref.[7]) led us to conjecture there that nonzero
shear at an interface or free surface is necessary for the
insoluble-surfactant instability.(It follows, for example, that
applying an external tangential stress to a film flowing down
an inclined plane can destabilize a previously stable flow
with insoluble surfactants at its free surface; however, this
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prediction has not as yet been verified.) The interfacial shear
rate is clearly nonzero for the case of the two-layer Couette
flow whose insoluble-surfactant instability was uncovered in
Refs.[7,8]. [The interfacial shear is also nonzero for the case
of a core-annular flow studied in an unpublished work by
H.H. Wei and D. Rumschitzki(private communication).
However, the capillary instability of the cylindrical interface
is always present, so the insoluble-surfactant instability can-
not be studied in its “pure form.” The crucial role of the
interfacial shear first transpired in Ref.[7].] In the present
communication, we choose the case of a plane(Couette)
flow (a particular case of those considered in Refs.[7,8]) to
study the effect of inertia on the insoluble-surfactant
instability.

In Sec. II, the governing equations and the basic flow are
given. In Sec. III, the stability problem is formulated. Results
are presented in Sec. IV. Section V contains a summary of
results and some discussions.

After the present work had been finished and submitted
for publication, a related paper, Ref.[17] (an uncorrected
proof), became available online. We have added a compari-
son of the results in appropriate places below. The subject
matter is the same, but the approaches of the two papers
differ; each has its own advantages. In general, they comple-
ment and support each other.

II. GOVERNING EQUATIONS AND THE BASIC STATE

The Couette flow of two immiscible fluid layers between
two infinite parallel plates considered here(see Fig. 1) is a
particular case of the more general Couette-Poiseuille flow
treated in Refs.[7] and [8]. Therefore, we will omit some
overlapping details.

Let the basic flow be driven by a shearing motion of the
solid plates.

For simplicity, the densities of the two fluids are equal,
and gravity is not included.(It is straightforward to general-
ize this formulation to include gravity, as in Ref.[9].) It is
convenient to use the reference frame of the unperturbed
interface. Lety* be the spanwise, “vertical,” coordinate(the
symbol * indicates a dimensional quantity) measured from
the basic interfacesy* =0d with y* being positive in the

thicker layer. We haved1ød2, whered1 andd2 are the thick-
nesses of the “lower” and “upper” fluids, respectively. With-
out loss of generality, thex-directed velocityU2 of the upper
plate(at y* =d2) is positive and the velocity of the lower plate
(at y* =−d1) is −U1, whereU1.0. It is easy to see that, in
terms of U, the velocity of the upper plate relative to the
lower plate (i.e., U=U1+U2), we have U1=m2d1sm2d1

+m1d2d−1U andU2=m1d2sm2d1+m1d2d−1U, wherem1 andm2

are the viscosities of the lower and upper fluids, respectively.
The well-known Squire’s theorem, generalized and

proved for the case with insoluble surfactants in Ref.[8],
allows us to confine our consideration to the two-
dimensional perturbed flows(in thex*y* plane). The Navier-
Stokes and incompressibility equations governing the fluid
motion in the two layers are(with j =1 for the lower layer
and j =2 for the upper one)

rS ] v j
*

] t*
+ v j

* ·¹*v j
*D = − ¹*pj

* + m j¹
*2v j

* ,

¹* ·v j
* = 0, s1d

where ¹* =s] /]x* ,] /]y*d, r is the density(of both fluids),
v j

* =suj
* ,v j

*d is the fluid velocity with horizontal component

uj
* and vertical componentv j

* , andpj
* is the pressure.

We use the “no-slip, no-penetration” boundary conditions
(requiring zero relative velocities) at the plates:u1

* =−U1,
v1

* =0 aty* =−d1; andu2
* =U2, v2

* =0 aty* =d2. The interfacial
boundary conditions are as follows. The velocity must be
continuous at the interfacey* =h*sx* ,t*d: fv*g1

2=0, where
fAg1

2=A2−A1 denotes the jump inA across the interface. The
interfacial balances of the tangential and normal stresses are,
respectively,

1

1 + hx*
*2 fs1 − hx*

*2dmsuy*
* + vx*

* d + 2hx*
*2msvy*

* − ux*
* dg1

2

= −
sx*

*

s1 + hx*
*2d1/2

, s2d

hs1 + hx*
*2dp* − 2mfhx*

*2ux*
* − hx*

* suy*
* + vx*

* d + vy*
* gj1

2

=
hx*x*

*

s1 + hx*
*2d1/2

s* , s3d

wheres* is the surface tension which depends on the surface
concentration of the insoluble surfactantG* , and the sub-
scripts indicate partial derivatives. The kinematic condition
is ht*

* =v* −u*hx*
* . The surface concentration equation(as was

derived in Ref.[8]) is

] sHG*d
] t*

+
]

] x* sHG*u*d = Ds
]

] x* S 1

H

] G*

] x* D , s4d

whereH=Î1+hx
*2, andDs is the surface molecular diffusiv-

ity of surfactant;Ds is usually negligible, and is discarded
below. For the linear stability problem we are interested in,
we can linearize the surface tension dependence on the sur-

FIG. 1. Schematics of a two-layer Couette flow in the reference
frame in which the basic interface, the horizontal dashed line at
y* =0, is at rest. The upper plate(at y* =d2) moves to the right with
the speedU2 and the lower plate(at y* =−d1) moves to the left with
the speedU1. The disturbed interfacey* =h*sx* ,t*d is shown as a
sinusoidal curve.G*sx* ,t*d is the concentration of the insoluble sur-
factant monolayer. The velocity profile(bold arrows) is piecewise
linear.m1 andm2 are the viscosities, andr is the common density of
the two fluids.
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factant concentration:s* =s0−EsG* −G0d, where s0 is the
basic surface tension andE is a constant.

We introduce the dimensionless variables

sx,yd =
sx* ,y*d

d1
, t =

t*

d1m1/s0
, su,vd =

su* ,v*d
s0/m1

,

p =
p*

s0/d1
, G =

G*

G0
, s =

s*

s0
. s5d

The dimensionless velocity field of the basic Couette flow,
with a flat interface,h=0; no pressure,p=0; and uniform
concentration of surfactant,G=1 (where the overbar indi-
cates a basic state quantity), is the following (linear) solu-
tions of the governing equations:

u1syd = sy, v1 = 0 for − 1ø y ø 0, s6d

u2syd =
s

m
y, v2 = 0 for 0ø y ø n, s7d

where 1øn=d2/d1 and m=m2/m1. Here the constants, the
dimensionless shear rate, is proportional to the relative plate
speed:s=fm/ sm+ndgUm1/s0=U1m1/s0. Note that, due to
the measurement units, the shear parameters is equal to the
capillary number, Ca=m1U1/s0,

s= Ca,

although they are defined independently. For this reason, and
in parallel with Ref.[17], we chose not to eliminate one of
them in favor of the other.

III. STABILITY PROBLEM FORMULATION

The general formulation of the linear stability problem for
the two-dimensional infinitesimal disturbances has been
given in Ref.[7]. For convenience, an abridged account is
included below.

We consider the perturbed state with small deviations
from the basic flow:h=h̃, uj =uj + ũj, v j = ṽ j, pj = p̃j, and G

=1+G̃. We introduce disturbance stream functionsc̃ j whose

derivatives are the components of velocity:ũj =c̃ jy
and ṽ j

=−c̃ jx
. The normal modes have the form

sh̃,c̃ j,p̃j,G̃d = fh,f jsyd, f jsyd,ggeiasx−ctd, s8d

wherea is the wave number of the disturbance,g andh are
constants, andc=cR+icI is the complex wave-speed. The
growth rateg depends on the imaginary part ofc only: g
=acI. Linearizing the kinematic boundary condition yields

h̃tsx,td=−c̃xsx,0 ,td. Henceh is expressed in terms of the
stream-function,

h = f1s0d/c s9d

(assumingcÞ0). The momentum equations can be cast as
the well-known Orr-Sommerfeld equations for the stream-
functions,

mjsD2 − a2d2f j = ia
Re

Ca
fsuj − cdsD2 − a2df j − f jD

2ujg,

s10d

where m1=1, m2=m, D=d/dy, and Re=rU1d1/m1 is the
Reynolds number.

The disturbance stream-functionsf j are subject to the
boundary conditions at the plates and at the interface. The
boundary conditions at the plates require

f1s− 1d = f18s− 1d = f2snd = f28snd = 0, s11d

where the prime indicates differentiation with respect toy.
Continuity of velocity at the interface implies

f1s0d = f2s0d s12d

and

mff18s0d − f28s0dg = s1 − md
s

c
f1s0d. s13d

After linearization, the normal stress condition, Eq.(3),
yields

mf2-s0d − f1-s0d − 3a2fmf28s0d − f18s0dg = − i
a3

c
f2s0d.

s14d

The linearized tangential stress condition, Eq.(2), reads
mf29s0d−f19s0d+a2fmf2s0d−f1s0dg=iMag, where M
=EG0/s0 is the Marangoni number. We replace the constant
g in this equation by its expression from the linearized
surfactant transport equation[derived from Eq. (4)],
G̃t+u1y

s0dh̃x+c̃1xy
sx,0 ,td=0, whence g=s1/cdf18s0d

+ss/c2df1s0d. As a result, the linearized tangential-stress bal-
ance condition is written purely in terms of stream-functions,

mf29s0d − f19s0d + a2fmf2s0d − f1s0dg

= iM
a

c
Ff18s0d +

s

c
f1s0dG . s15d

In the present work, to study the effect of inertia[math-
ematically the nonzero right-hand side of Eq.(10)], we ex-
pand(cf. the expansions of Ref.[18], which studied a single-
fluid Couette flow) the stream-functions and the complex
wavespeed as

f jsyd = f j0syd + i«f j1syd, c = c0 + i«c1, s16d

where«=a Re/Ca. The eigenfunctionsf j0, the solutions of
the problem with the(Stokes-) simplified Orr-Sommerfeld
equations

sD2 − a2d2f j0 = 0, s17d

are known for arbitrary wave numbers from Ref.[8] (where
the presentf j0 were denoted simply asf j), together with the
eigenvaluec0 (a modified notation for the wavespeedc of
Ref. [8]).

The inertia correctionsf j1syd satisfy the equations
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mjsD2 − a2d2f j1 = fsuj − c0dsD2 − a2df j0 − f j0D
2ujg,

s18d

where, assuming

U«f j1

f j0
U ! 1, U«c1

c0
U ! 1, s19d

we have changedf j to f j0 andc to c0 on the right-hand side
of Eq. (18). The last term of Eq.(18) disappears for the case
of a Couette flow, and one looks for the general solution in
the form

f j1syd = Bj1 sinhsayd + Cj1y coshsayd + Dj1y sinhsayd

+ Ej1y
2 coshsayd + Fj1y

2 sinhsayd

+ Gj1y
3 coshsayd + Hj1y

3 sinhsayd. s20d

The first three terms are homogeneous solutions; they vanish
when Eq.(20) is substituted into Eq.(18). Then the coeffi-
cientsEj1, Fj1, Gj1, and Hj1 are readily obtained using the
already known expressions for the quantities appearing on
the right-hand side of Eq.(18). They are

E11 = −
as+ ssaca + ac0ca

2

4a3

+
ssa

2 + ac0s− a + sacad
4a3 B10, s21d

F11 = −
sca

2 + ac0sa + sacad
4a3 +

− as+ ssaca + ac0sa
2

4a3 B10,

s22d

G11 =
sca

2

12a2 +
ssa − sacad

12a2 B10, s23d

H11 =
ssa + sacad

12a2 −
ssa

2

12a2B10, s24d

E21 =
ans+ ssancan − amc0can

2

4a3m2n2

+
ssan

2 + ac0msan − sancand
4a3m2n2 B20, s25d

F21 =
− scan

2 + amc0sam+ sancand
4a3m2n2

+
ans− ssancan + amc0san

2

4a3m2n2 B20, s26d

G21 =
scan

2

12a2m2n2 −
ssan − sancand

12a2m2n2 B20, s27d

and

H21 =
− ssan + sancand

12a2m2n2 −
ssan

2

12a2m2n2B20, s28d

where we have used the abbreviations

ca = coshsad, sa = sinhsad,

can = coshsand, san = sinhsand. s29d

Here (see Ref. [8]; note that ourBj0 are their Bj) B10
=mB20− i /2c0; the coefficientB20 is found in terms ofc0
from the equation

Fsm− 1da −
msa

2

a
+

san
2

an2GB20 + FS1 −
1

m
Ds−

i

2
Sa −

sa
2

a
DG 1

c0

+
n + 1

n
+

1

a
Ssaca +

sancan

n2 D = 0, s30d

andc0 solves the quadratic equation

q2c0
2 + q1c0 + q0 = 0. s31d

The coefficientsq0, q1, andq2 are

q0 =
1

4

M

a
sa2n2 − san

2 dsa2 − sa
2d −

i

2
Msssan

2 − sa
2n2d, s32d

q1 = sm− 1dssan2 − n2saca + an − sancand

+
i

2
Fsan + sancandSa −

sa
2

a
DmM

+ sa2n2 − san
2 dS1 +

saca

a
DM

− san − sancandSa −
sa

2

a
Dm

− sa2n2 − san
2 dS1 −

saca

a
DG , s33d

and

q2 = Sa −
sa

2

a
Dsa2n2 + can

2 dm2 + 2San − a3n2 −
sacasancan

a
Dm

+ Sa +
ca

2

a
Dsa2n2 − san

2 d. s34d

From the boundary condition at the plates(11), taking into
account the corresponding leading-order equations(see
Ref. [8])

f10s− 1d = f108 s− 1d = f20snd = f208 snd = 0, s35d

we obtain the conditions

f11s− 1d = f118 s− 1d = f21snd = f218 snd = 0. s36d

Hence, the coefficientsCj1 andDj1 are eliminated by being
expressed in terms ofBj1. Then the substitution of thef j1
into the « corrections to the interfacial boundary conditions
(13)–(15) yield (similarly to Ref. [8]) the following system
of three nonhomogeneous linear equations for the three un-
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knownsB11, B21, andc1 [cf. Eqs.(3.16)–(3.18) of Ref. [8]]:

Sa −
sa

2

a
DB11 + S− a +

san
2

an2DB21 +
s1 − mds

m

c1

c0
2 = f1,

s37d

2B11 − 2mB21 − i
c1

c0
2 =

f2

a3 , s38d

S iM

c0
ssa

2 − a2d − 2sa − sacadDB11 +
2m

n2 s− an + sancandB21

+ iMSa + 2a
s

c0
+ saca + sa2 − sa

2dB10Dc1

c0
2 = f3, s39d

where

f1 = S− 1 +
saca

a
DE11 + S− n +

sancan

a
DE21 −

sa2

a
F11

+
san

2

a
F21 + S1 −

2saca

a
DG11

+ S− n + 2
sancan

a
DnG21 + 2

sa
2

a
H11 + 2n

san
2

a
H21, s40d

f2 = 6saF11 − amF21 + G11 − mG21d, s41d

f3 = S iM

c0
sa − sacad − 2sa

2DE11 + 2msan
2 E21

+ S iMsa
2

c0
+ 2sa + sacadDF11 + 2msan + sancandF21

+ S iM

c0
s2saca − ad + 4ca

2DG11

+ 4mncan
2 G21 + 2S iMsa

2

c0
+ a + 2sacaDH11

+ 2mnsan + 2sancandH21. s42d

We derived the above equations with the help of the com-
puter algebra systemMAPLE. We also usedMAPLE to solve
these algebraic equations numerically and thus find the iner-
tia « corrections—i«c1 for the phase velocity and i«f j1 for
the eigenfunctions. The results are presented in the next
section.

In contrast to our perturbation approach, Ref.[17] used a
numerical method to solve differential equations(10). This
approach is less restrictive as regards the Reynolds number.
The perturbative solution provides for independent checks of
the numerical code of Ref.[17]. It also leads to some ques-
tions which do not naturally arise in the other approach—
such as the question about the additivity property for the
growth rate discussed below. For the most part, the actual
results obtained in the two papers do not overlap. We say
more about this below.

IV. RESULTS

A. Long waves: Analytical results

In the long-wave limita2!D2, similar to Refs.[6] and
[7], we can simplify Eq.(17) to the formD4f j0=0 which has
polynomial solutions found in Ref.[7]. Since the functions
f j0 are fourth-degree polynomials, the general solution for
the inertial correction is a sixth-degree polynomial,

f j1syd = B̃j1y + C̃j1y
2 + D̃j1y

3 + Ẽj1y
4 + F̃j1y

5 + G̃j1y
6

s43d

[cf. Eq. (20)]. We find

Ẽj1 = −
c0C̃j0

12mj
,

F̃j1 = −
3c0mjD̃j0 − sC̃j0

60mj
2 ,

G̃j1 =
sD̃j0

60mj
2 s44d

as the long-wave analog of Eqs.(21)–(28). The boundary
conditions yield the following seven linear nonhomogeneous

equations for the seven unknownsB̃11, B̃21, C̃11, C̃21, D̃11,

D̃21, andc1 [with B̃10, B̃20, andc0 known from Ref.[7] (see
table 1 there)]:

− B̃11 + C̃11 − D̃11 =
1

60
s7c0 + sdB̃10 −

s

60
−

3c0

20
, s45d

B̃11 − 2C̃11 + 3D̃11 = − S 5

12
c0 +

1

15
sDB̃10 +

1

2
c0 +

1

20
s,

s46d

nB̃21 + n2C̃21 + n3D̃21 =
n3ssn− 7mc0d

60m2 B̃20 +
sn3

60m2 −
3n2c0

20m
,

s47d

B̃21 + 2nC̃21 + 3n2D̃21 =
n2s4sn− 25mc0d

60m2 +
sn2

20m2 −
nc0

2m
,

s48d

B̃11 − B̃21 + i
s1 − mds

mc0
2 c1 = 0, s49d

3a2sB̃11 − mB̃21d − 6D̃11 + 6mD̃21 +
a3

c0
2 c1 = 0, s50d
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−
iMa

c0
B̃11 − 2C̃11 + 2mC̃21 −

Ma

c0
2 SB̃10 + 2

s

c0
Dc1 = 0.

s51d

We find that the« correction does not affect the stability of
the “mode 1” of Frenkel and Halpern[7] (which can be

called the “surfactant mode” since it vanishes with the Ma-
rangoni number,

c0 = −
1

4

iMsn − 1d
m− 1

a

Since the wavespeed correction i«c1 is purely real,

i«c1 =
«

480

sn − 1ds3mn4 + 4m3n + 4n5 + n6 + m3 + 3m2n2dMs

sn2 − mdsn + 1dsm− 1dm2 a. s52d

For the other, “nonsurfactant mode”—which is continuously
connected to the sole mode of Yih[6]—the « correction to
the growth rate of the Frenkel and Halpern[7] insoluble-
surfactant instability is exactly equal to the growth rate of the
Yih [6] viscosity-jump instability:c0 and the correction i«c1
are given by

c0 =
− 2sm− 1dsn + 1dn2s

c
−

ism− n2dwM

4sm− 1dc
a s53d

and

i«c1 = −
i«

60c3m2s4nm2 + m2 + 6n2m+ 4n3 + n4dsm− 1dn2s2

3sn8 + 4mn7 + 8m2n6 − 2n6m+ 8n5m2

− 4n5m+ 4n3m3 − 8n3m2

− 8n2m2 + 2n2m3 − 4nm3 − m4d, s54d

where w=m+3mn+3n2+n3 and c=m2+4mn+6mn2+4mn3

+n4. Thus, for the long-wave case, the growth rate is the sum
of independent contributions of the two instabilities, one due
to viscosity stratification and the other to the insoluble sur-
factant:gsM ,Red=gsM ,0d+gs0,Red.

This prediction made for the long-wave modes, which can
be called a “growth-rate additivity property,” is confirmed in
the long-wave limit of the general-case, arbitrary-a results
presented below. On the other hand, for the shorter-wave
modes, the growth-rate additivity property breaks down, as
we discuss next. This question arises naturally in the pertur-
bation theory(but not in a numerical study such as that of
Ref. [17]).

B. Computer-aided results for arbitrary wave numbers

The above statements regarding the additivity property for
the growth rate are illustrated by Fig. 2. It shows that
the dispersion curve for given nonzero values of Marangoni
and Reynolds numbers(M,Re ) is asymptotic to the sum of
the two growth rates, one for the values(0,Re) and the other
for (M,0), as the wave number approaches zero. However,
the two curves diverge as the wave number increases. This is
the case for both the nonsurfactant and surfactant modes.

One has to make sure that the consistency conditions(19)
are satisfied. Estimating the order of magnitude off j1 in
terms off j0 from Eq. (18), and taking into account the esti-
mates forD2 which follow from Eq.(20), viz., D2,1 for j
=1 anda&1, D2,a2 for j =1 anda@1, D2,n−2 for j =2
and a&n−1, and D2,a2 for j =2 anda@n−1, the validity
conditions(19) become

Ua
Re

s

maxsc0,sd
maxs1,a2d

U ! 1 s55d

and

FIG. 2. Dispersion curves forn=2, m=3.75, ands=Ca=2, for
the two normal modes:(a) the nonsurfactant mode and(b) the sur-
factant mode. The solid lines show the growth rategsM ,Red for
sM ,Red=s1,0.3d. For comparison, the dashed lines show the sum
of two growth rates,gs0,0.3d+gs1,0d.
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Ua
Re

s

maxsc0,sn/md
mmaxsn−2,a2d

U ! 1. s56d

We have checked that these conditions, as well as the condi-
tion u«c1/c0u!1, hold for the normal modes of Fig. 2.

Figure 3 shows how the change from the zero to a non-
zero Reynolds number changes the curve of marginal stabil-
ity in the wave number–Marangoni number plane. The sig-
nificant effect of inertia is that the critical Marangoni number
for the instability, Mc in Fig. 3(b), becomes nonzero. We
have observed thatMc moves further away from zero as the
Reynolds number is increased.

Figure 4 illustrates the spanwise structure of a normal
mode, taking as an example the case of Fig. 3.(Because of
the difference of scales, the curves corresponding to the
imaginary part of the normal mode with the smaller wave
numbera=0.01 are properly seen only in the blow-up shown
as an inset of Fig. 4.)

For the case withm,1 shown in Fig. 5, the only apparent
effect of inertia is the widening of the wave number range of
the long-wave insoluble-surfactant instability. In particular,
the marginal wave number atM =0, a0, is seen to increase
with the Reynolds number.

In view of the results of Ref.[8], the nonzero wave num-
ber value of the small-M limit of the marginal curve in Fig.

3(b) suggests that the mode responsible for the marginal sta-
bility is the surfactant mode. Similar considerations yield
that the marginal curve in Fig. 5 corresponds to the nonsur-
factant mode. We note that the questions illustrated in Figs.
2–5 are not studied in Ref.[17].

When inertia is taken into account, so that nonzero values
of the Reynolds number Re enter consideration, one can con-
sider the marginal stability in thea-Re plane. Figure 6 shows
the effect of changing the viscosity ratio through a charac-
teristic value,m=n2, at which the two disconnected branches
of the marginal curve become connected at the origin as
Re0smd→0 whenm→n2, and then detach from the origin as
a single smooth marginal curve. Thus, asm increases, there
is a change from three to two regions of alternating stability-
instability. Note that in this figure, as well as in those below,
the (equal) parameters Ca ands are changing proportional to
Re. This is because, along with Re, they are proportional to
the basic velocityU1, and therefore change together with Re
if the material and geometrical parameters of the problem are
fixed. (Note the difference with Ref.[17] where the marginal
stability curves in thea-Re plane are plotted withs=Ca
=const.) Figure 6(c) exhibits stability for all Reynolds num-
bers shown there provided the wave number is sufficiently
small. Also, there is stability for all wave numbers covered
provided the Reynolds number is sufficiently small.

In Fig. 7, we see a different change in the topology of the
marginal curve as the viscosity ratio varies. The two
branches of the marginal curve approach each other until
there is one common point at which four pieces of the mar-

FIG. 3. Marginal stability curves forn=3, m=2, s=Ca=10, and
(a) Re=0 and(b) Re=0.5. “u” indicates the region of unstable
normal modes and “s” corresponds to the region of stability. The
nonzero critical valueMc of the Marangoni number, theM-axis
intercept of the marginal curve, is due to inertia, ReÞ0.

FIG. 4. The spanwise dependence of normal modesf j0syd and
f jsyd for n=3, m=2, M =2, s=Ca=10, Re=0.5:(a) the real parts
and (b) the imaginary parts. The solid lines correspond tof j0 for
a=0.01, the dashed lines tof j with a=0.01, the dash-dotted lines
to f j0 with a=5, and the dash-double-dotted lines tof j with a
=5. The inset is a blow-up of the imaginary parts fora=0.01. Note
that some of thef j curves cannot be distinguished from theirf j0

counterparts.
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ginal curve come together. Afterwards, the pieces separate
again but now they are reconnected in a different arrange-
ment. Checking the validity conditions, Eqs.(55) and (56),
shows that the reconnection region is at the limit of validity
for our approach. However, a similar reconnection has also
been observed in Ref.[17] (see their Fig. 8). The other type
of topological change, the fusion of the marginal curve,
shown in our Fig. 6, has not been reported in Ref.[17] (pre-
sumably, simply because Ref.[17] did not focus its attention
on the corresponding parameter range).

Finally, Fig. 8 shows a single-brancha-Re marginal curve
for a case withm,1.

V. SUMMARY AND DISCUSSION

We have shown that the effects of inertia on the insoluble-
surfactant instability are captured in successive approxima-
tions starting from the inertialess Stokes approximation, pro-
vided the Reynolds number is sufficiently(as determined by
the wave number and other parameters) small. This requires
considering only an algebraic eigenvalue problem which is
readily solved by using no more than a computer algebra
system such asMAPLE. The long-wave results are obtained
analytically but a computer-aided solution is needed other-
wise. In the long-wave limit, a growth-rate additivity prop-
erty holds in the sense that the growth rategsM ,Red is the
sum of the two growth rates:gsM ,0d+gs0,Red; but, for non-
small-wave numbers, this property, in general, breaks down.

This is in contrast to the surfactantless case of Ref.[11] in
which this property for inertia and Rayleigh-Taylor gravity
effects was found to hold for all wave numbers. If from that
work one were to get an impression that this growth-rate
additivity property is a universal principle, similar to the su-
perposition principle for linear equations, then the present
work gives a counterexample. Of course, the stability equa-
tions are linear, and the superposition principle involving
sums of thedisturbancesholds. But the sum of the growth
rates is a different matter. In general, the dispersion relation
is nonlinear and gives the growth rate as a complex function
of the parameters, so there is no reason to expect the addi-
tivity property for the growth rates. Also, in the long-wave

FIG. 5. Same as Fig. 3 but for a viscosity ratio value smaller
than 1, viz.,m=1/3.

FIG. 6. Marginal stability curves forn=1.2, M =1.2, variables
and Ca such thats/Re=Ca/Re=2/5, and(a) m=1.439, (b) m
=1.440, and(c) m=1.441. The two disconnected regions of stability
coalesce into one asm increases past the critical valuem=n2, and
the two disconnected branches of the marginal curve coalesce at the
origin of thea-Re plane.
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limit, the first inertia correction to the growth rate(to which
our consideration is confined here) is zero for the surfactant
mode, but is not vanishing for the other, nonsurfactant mode
(the latter is the only mode existing when no surfactants are
present, as in Refs.[6] and [11]). In the limit of a clean
interface, the results of Ref.[11] hold.

We have studied the change in the marginal stability
curves in the wave number–Marangoni number plane as the

Reynolds number is changed from zero to a nonzero value.
The significant result for the viscosity ratiom.1 (for several
values ofm that we studied) is that the critical Marangoni
number changes from zero to a nonzero value. Thus, the flow
is stable for all wave numbers when the Marangoni number
is sufficiently small. For the opposite case,m,1, the only
change seems to be the widening of the wave number range
of the long-wave instability.

When the nonzero values of the Reynolds number are
brought into consideration, we can look for the marginal
curves in the wave number–Reynolds number plane(which
of course does not exist for the inertialess case). Varying the
viscosity ratio, we have observed changes in the topology of
the marginal curves at certain characteristic values. Thus, at
m=n2, the two branches of the marginal curve, one with the
Reynolds-number intercept equal to zero and the other with a
nonzero intercept Re0, become connected as Re0→0 when
m→n2. For m.n2, the marginal curve detaches from the
origin as a single smooth curve. As a result, form.n2, the
flow is stable for all wave numbers if the Reynolds number is
sufficiently small; also, it is stable for all Reynolds numbers
provided the wave number is sufficiently small.

A different change in the topology of the marginal curve
has been observed for larger values ofm. For those, asm is
increased, at some characteristic valuem0,n2, the two
branches come into contact at some point bounded away
from the origin, and then asm is further increased, two new,
reconnected marginal branches separate and move apart.
This type of change of the marginal curve has also been
observed in Ref.[17].

These perturbative results are subject to the validity con-
ditions, Eq.(55) and (56). For cases in whichn,1 andm
,1, and alsoc0&s, the two conditions simplify to become
just one,aRe/maxs1,a2d!1, which meansa Re!1 for a
&1 and Re/a!1 for a@1. We note that for the cases with
M =1, there is a difficulty in satisfying the conditions(55)
and(56) for large wave numbers. In Ref.[8], the short-wave
asymptotic equation forcI, the imaginary part of the
wavespeed, was given, Eq.(4.14) there.(Note that there was
a misprint: the lastm in the first line should beM.) The two
solutions werecI =−M / f2sm+1dg andcI =−1. With this, Eq.
(A2) of Ref. [8] yields the real partcR, and it turns out to
containsM −1d in the denominator. Thus,ucu→` asM→1.
As a result, conditions(55) and (56) are inevitably violated.
It remains an open question why the pointM =1 should be so
peculiar.

As has already been mentioned above, the numerical ap-
proach of Ref.[17] has less restrictive validity constraints.
Our computer-aided approach has the advantage that it is
easier to check the results and to extend the investigation to
other parameter values, since one does not have to create a
computer program which was necessary for the approach of
Ref. [17]. We believe that the two approaches complement
each other.
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FIG. 8. Marginal curve forn=1.2, M =1.2, m=0.5, ands/Re
=Ca/Re=2/5.

FIG. 7. Marginal stability curves forn=2, M =1.1, variables
and Ca such thats/Re=Ca/Re=2/5, and(a) m=3.29 and(b) m
=3.3. The topology of the marginal curve changes asm passes
through a characteristic value located between 3.29 and 3.3.
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