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Effect of inertia on the insoluble-surfactant instability of a shear flow
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We study, for the case of the two-layer plane Couette flow, the effects of inertia on the recently found
instability due to insoluble surfactants. The insoluble-surfactant instability takes place even when inertia is
absent provided an interface or a free surface under a nonzero shear is laden with an insoluble surfactant.
Considering a normal mode of the streamwise wave nurabtre perturbation theory we construct is good for
any « provided the Reynolds number is correspondingly small. Inertia is responsible for some notable effects,
including the appearance of new regions of instability and stability. For long—and only for long—waves, the
following growth-rate additivity property for the inertia and interfacial instabilities holds: the growth rate
corresponding to some nonzero values of the Marangoni nuMbard the Reynolds number Re is the sum of
two contributions, one corresponding to the same valull dfut zero Re, and the other corresponding to the
same(nonzerg Re but zeroM. This violation of the additivity property is in contrast to the case of a
surfactantless Couette flow where this property holds for all wave numbers. Thus these results provide a
counterexample to a conjecture that this additivity property is a universal principle. Among other results, when
the thiner layer is the less viscous one, there is a nonzero critical Marangoni niuiglfer the onset of
instability; this(long-wave thresholdM. grows from zero with the Reynolds number. Also, varying the ratio
of viscosities through certain characteristic values leads to changes in the topology of marginal-stability curves.
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[. INTRODUCTION Naturally, thesgStokes-flowy properties do not depend on

Two-layer flows including those containing surfactantsth® Reynoldg nLrJ]mberr{ However, such a deper_ldencehshould
occur in many industrial and biomedical situations—such ad® recovered when the next ordgmertig) correction to the
coating in photographye.g., [1]), the closure of the small alpern and Frenkel8] theory is considered. This implies
airways of the lungs in which the air normally flows in con- pertyrbatlve éxpansions in the small parameter which is pro-
tact with the liquid lining the wallge.q., [2,3)), lubricated ~ Portional to the dimensionless wave number and the Rey-
pipelining (e.g.,[4]), and secondary oil recoverg.g., [5]). nolds number—each of _whlch can be arbltr_arlly small or
Clearly, stability of such flows is of considerable interest, 'arg€ provided the other is appropriately restrictthe lat-

It is well known since the work of Yiti6] that the shear (€7 Gircumstance is in contrast to Y[], who, to reiterate,
flow of two fluids with different viscosities can be unstable. used expansions in the powers of a small-wave number pa-

; ) X inertia on the inertialess instability found in Refg] and[8].
wave parametgrwhich captures the effect of inerti@e-  For simplicity, we consider a plane Couette flgfor a simi-
flected in the dependence of the stability properties on theyy treatment of inertia effects in surfactantless Couette-flow
Reynolds number Thus, this instability is due to the effects stapility, see Albert and Charr[L1]. They, however, used

of inertia. expansions in a small parameter which was just the Reynolds
Recently, in Refs[7] and [8], we found that even the number and did not include the wave number fagtor.
Stokes-flow(stable in the absence of surfactgntsgimes The stability of plane Couette flow of two fluids with no

can be unstable if an insoluble surfactant is present and thsurfactants has been extensively studigebr an overview
interfacial shear rates are nonzésee also Ref9]). In con-  and further references, see Reff4,11].) In contrast, there
trast to the solely long-wave treatment of YjB] (which  has been only a small number of stability studies for flows
required only simple polynomial eigenfunctignbut similar ~ with insoluble surfactants. The earlier studies considered
to, e.g., Jain and Rukenstejh0], Ref. [8] noticed that the mostly single-fluid flows down inclined or vertical planes
spanwise structure of a normal mode having arbitrarye.g.,[12-15; see also Refl16]). In such flows, the surface
streamwise length is a finite linear combination of certainvalue of the shear rate is zero. As was pointed out in F3&f.
functions(which are products of power and hyperbolic func- this might be the reason for the absence of destabilization of
tions). Hence, the originally differential-equation eigenvaluethose flows by surfactants. Indeed, the results of that work
problem is reduced to an algebraic one, and the growth ratgslong with Ref.[7]) led us to conjecture there that nonzero
are found by solving a quadratic equation whose coefficientshear at an interface or free surface is necessary for the
are known elementary functions of the parameters. This alinsoluble-surfactant instabilitylt follows, for example, that
lowed us in Ref.[8] to readily investigate the Stokes-flow applying an external tangential stress to a film flowing down
stability properties for all wavelengths, over the entire pa-an inclined plane can destabilize a previously stable flow
rameter space. with insoluble surfactants at its free surface; however, this
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yi— / thicker layer. We havd, <d,, whered,; andd, are the thick-
L uly) nesses of the “lower” and “upper” fluids, respectively. With-
K, d, out loss of generality, the-directed velocityJ, of the upper
P r . plate(aty” =d,) is positive and the velocity of the lower plate
__________________________ . X (aty'=-d,) is -U,;, whereU;>0. It is easy to see that, in
%1 n Ty | d? terms of U, the velocity of the upper plate relative to the

lower plate (i.e., U=U;+U,), we have U;=pu,d;(ud;

FIG. 1. Schematics of a two-layer Couette flow in the reference” #102) 1l_J andU,= gy o0y + ado) U, wherew, and u,
frame in which the basic interface, the horizontal dashed line af"® the viscosities of the lower and upper fluids, respectively.
y"=0, is at rest. The upper plataty"=d,) moves to the right with The well-known Squire’s theorem, generalized and
the speedJ, and the lower platéaty* =—-d;) moves to the left with ~ proved for the case with insoluble surfactants in Rél,
the speedJ;. The disturbed interfacg”="(x",t") is shown as a allows us to confine our consideration to the two-
sinusoidal curvel* (x",t") is the concentration of the insoluble sur- dimensional perturbed flow@n thex'y" plane. The Navier-
factant monolayer. The velocity profi@old arrows is piecewise  Stokes and incompressibility equations governing the fluid
linear. u; andu, are the viscosities, anglis the common density of motion in the two layers aréwith j=1 for the lower layer

the two fluids. and =2 for the upper one
- : . : Jv;
prediction has not as yet been verifig@ihe interfacial shear p(ﬂ +o -V*vf> R A
; ! i i T M i
rate is clearly nonzero for the case of the two-layer Couette

flow whose insoluble-surfactant instability was uncovered in

Refs.[7,8]. [The interfacial shear is also nonzero for the case V.0 =0, (1)
of a core-annular flow studied in an unpublished work by !

H.H. Wei and D. Rumschitzki(private communication ~ Where V' =(a/ox",d/dy"), p is the density(of both fluids,
However, the capillary instability of the cylindrical interface v;=(u;,v;) is the fluid velocity with horizontal component

*

is always present, so the insoluble-surfactant instability cang; and vertical componem;, and p} is the pressure.

not be studied in its “pure form.” The crucial role of the ~ \We use the “no-slip, no-penetration” boundary conditions
interfacial shear first transpired in RQV]] In the present (requiring zero relative Ve|0Citi¢Sﬁt the p|ates:u;:—ull
communication, we choose the case of a plé@euett¢  ;]=0 aty’=-d,; andu,=U,, v,=0 aty =d,. The interfacial
flow (a particular case of those considered in REfs8]) to  poundary conditions are as follows. The velocity must be
study the effect of inertia on the insoluble-surfactantcontinuous at the interfacg =7 (x',t"): [v"]2=0, where
instability. [Al3=A,-A, denotes the jump iA across the interface. The

_In Sec. Il, the governing equations and the basic flow argqerfacial balances of the tangential and normal stresses are,
given. In Sec. lll, the stability problem is formulated. Resunsrespectively

are presented in Sec. IV. Section V contains a summary of

results and some discussions. N e ao
After the present work had been finished and submitted 1 & n*g[(l D MUy +v,e) + 27 plvyy — Ue) Jy

for publication, a related paper, RgfL7] (an uncorrected X

proof), became available online. We have added a compari- o

son of the results in appropriate places below. The subject =T 2
matter is the same, but the approaches of the two papers (1+7¢)
differ; each has its own advantages. In general, they comple-
ment and support each other. {(1 + ng)p* _ Zﬂ[ﬂxzux* — e (Uy +v0) + Uy*]}i
Il. GOVERNING EQUATIONS AND THE BASIC STATE LSS * 3)

. . . = (1+ ?)1/20- !
The Couette flow of two immiscible fluid layers between I

two infinite parallel plates considered hesee Fig. 1is @  \yhereo” is the surface tension which depends on the surface
particular case of the more general Couette-Poiseuille flovkyncentration of the insoluble surfactafit. and the sub-
treated in Refs[7] and [8]. Therefore, we will omit some  geyints indicate partial derivatives. The kinematic condition

overlapping details. is 7.=v" —U" 7... The surface concentration equati@s was
Let the basic flow be driven by a shearing motion of the e =0 " e quati
derived in Ref[8]) is

solid plates.
For simplicity, the densities of the two fluids are equal, JHT) 9 . 9 (1T
and gravity is not includedlt is straightforward to general- it + (7X*(HF u)= Dsax* (ﬁg)
ize this formulation to include gravity, as in R¢B].) It is
convenient to use the reference frame of the unperturbesthereH=\1+7?2, andDy is the surface molecular diffusiv-
interface. Lety" be the spanwise, “vertical,” coordinatthe ity of surfactant;Dy is usually negligible, and is discarded
symbol indicates a dimensional quantityneasured from below. For the linear stability problem we are interested in,
the basic interfacgy"=0) with y* being positive in the we can linearize the surface tension dependence on the sur-

(4)
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factant concentrations” =oy,—E(I'" -I'y), where oy is the » 25, . Re__ . ”
basic surface tension arilis a constant. my(D”— a®)°¢; = '“ai[(uj —¢)(D° - a) ;- H D],
We introduce the dimensionless variables
(10
*’ * t* *’ * )
(x,y) = x y), t= , (u,u):(u—v), where m=1, my=m, D=d/dy, and Re=pU,d;/u; is the
d dip/ oo oo/ g Reynolds number.

The disturbance stream-functiors are subject to the

P e r o g boundary conditions at the plates and at the interface. The
P= ooldy’ Ty 7= oo’ (5) boundary conditions at the plates require
The dimensionless velocity field of the basic Couette flow, ¢1(=1) = ¢1(= 1) = $y(n) = $5(n) =0, (11

with a flat interface,»=0; no pressurep=0; and uniform
concentration of surfactant;=1 (where the overbar indi-
cates a basic state quanjitys the following (linean solu-

where the prime indicates differentiation with respectyto
Continuity of velocity at the interface implies

tions of the governing equations: $1(0) = $,(0) (12)
uy(y)=sy, v,=0 for -1<y=<0, (6) and
! ! — _ §
To(y) = %y, 7,=0 for0<y=<n, 7) m[#1(0) — ¢5(0)] = (1 m)c¢1(0)- (13

where 1=n=d,/d; andm=pu,/u;. Here the constarg, the gféleésllnearlzatlon, the normal stress condition, E@),

dimensionless shear rate, is proportional to the relative plat
speed:s=[m/(m+n)]Uu,/09=U u/op. Note that, due to . " , , , B
the measurement units, the shear parangterequal to the M5 (0) = ¢1'(0) = 3aTme;(0) = ¢1(0)] = - i ¢20).

capillary number, Cag,U;/ oy, (14)

s=Ca, . . . .
The linearized tangential stress condition, Eg8), reads

although they are defined independently. For this reason, artig(0) - ¢7(0) + @ lme,(0) - p1(0)]=iMag, where M
in parallel with Ref.[17], we chose not to eliminate one of =EIl'y/ 0y is the Marangoni number. We replace the constant

them in favor of the other. g in this equation by its expression from the linearized
surfactant transport equatiofiderived from Eq. (4)],
lIl. STABILITY PROBLEM FORMULATION [i+Uy (0)7+ 4, (x,0,0=0,  whence  g=(1/c)¢;(0)

+(s/c®) ¢4(0). As a result, the linearized tangential-stress bal-

The general formulation of the linear stability problem for 5 e condition is written purely in terms of stream-functions,
the two-dimensional infinitesimal disturbances has been

given in Ref.[7]. For convenience, an abridged account is mg5(0) — ¢7(0) + @’[Me,(0) = ¢1(0)]
included below.

We consio!er the pe~rturbe51 slate Wi!lh smgll deviations :ng|:¢£(O)+§(;bl(O):|. (15)
from the basic flow:n="7, u;=U;+U;, v;=v;, p;=p;, andI’ c c
=1+I'. We introduce disturbance stream functigfjsvhose In the present work, to study the effect of inerfiath-
derivatives are the components of velocity=¢; andu; ematically the nonzero right-hand side of Eg0)], we ex-
:_@, _The normal modes have the form g pand(cf. the expansions of Reff18], which studied a single-

Ix fluid Couette flow the stream-functions and the complex
G050 = W) fiy).geeo, (g Wavespeedas

wherea is the wave number of the disturbangeandh are Bi(Y) = dyoy) +isp(y), c=co+iscy, (16)

constants, an@=cg+iC is the complex wave-speed. The \yheres=« Re/Ca. The eigenfunctiong, the solutions of
growth ratery depends on the imaginary part ofonly: ¥ the problem with the(Stokes) simplified Orr-Sommerfeld
=ac,. Linearizing the kinematic boundary condition yields equations

(X, t)==41(x,0,t). Henceh is expressed in terms of the s s

stream-function, (D= a)*¢jo=0, (17)

h=¢,(0)/c (9) are known for arbitrary wave numbers from RE] (where
the presentp;, were denoted simply ag)), together with the
(assumingc# 0). The momentum equations can be cast agigenvaluec, (a modified notation for the wavespeedof
the well-known Orr-Sommerfeld equations for the stream-Ref. [8]).
functions, The inertia correctiongb;;(y) satisfy the equations
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I'T'IJ'(D2 — a2)2¢j1 = [(GJ - C())(D2 — a2)¢j0 - ¢j0D2Uj]: H. = -s(an+ Sancan) _ Sgan B (29)
(18) 27 12a%mPn? 1202m2n?2 2%
where, assuming where we have used the abbreviations
. c c,=coshla), s, =sina),
LY P e (19)
i0 Co

Cun = COSHan), s,,=sinh(an). (29
we have changeg; to ¢;, andc to ¢, on the right-hand side

of Eq. (18). The last term of Eq(18) disappears for the case
of a Couette flow, and one looks for the general solution in

Here (see Ref.[8]; note that ourBj, are their B)) By
=mB,y—i/2cy; the coefficientB,, is found in terms ofcg
from the equation

the form
g ¢ 1\ i S\ |1
#j1(y) = Bjs sinh(ay) + Cj;y costtay) + Djy sinh(ay) {(m—l)a—&+ﬂ2 Boo+ (1——)5—'— a=—]|—
5 , . a an m 2 a/ |cy
+Ej1y° cosllay) + Fj;y” sinh(ay) el 1 Scon
+Gjyy° cosh{ay) + H;;y® sinh(ay). (20) ot St o7 =0, (30

The first three terms are homogeneous solutions; they vanisihqc, solves the quadratic equation

when Eq.(20) is substituted into Eq¢18). Then the coeffi-

cientsEj;, Fj1, Gj;, andHj, are readily obtained using the qzco+qlco+q0:0. (31
already known expressions for the quantities appearing o

the right-hand side of Eq18). They are Fhe coefficients, ;. ande, are

iM i
as+S8,C, + aCyC? Qo= Z_(aznz -$)(a?-<) - EMS(Sin -sin?), (32)
E11: - 4 3 o
o
Ssi + C!CO(_ o+ Saca) ql = (m - 1)5(0[”2 - nzsaca +an- SanCan)
+ 3 B101 (21) .
4o i sﬁ
+ | (an+s,,Con)| @ = — MM
2 1%
s +acy(@+S,C,)  — as+S§,C, + acySs .
Fu=" 4a° * 403 Bio, +(an? - in)( p a) M
(22
- (Cl/n Sancan)( )
sc , Sla-s.c )
Gy = >t >~ Bios (23 s.C
12« 12« _ (a2n2 an) (43 01) (33)
o
S(a+s,C,)  SS and
Hiqi = 1202 190 ~5B10, (24) 2
$4CuSunC
0= ( - —"‘)(a n?+c2,)m? + 2<an -a’n?- w)m
o o
_ aNS+ S§,,Con — AMGCoy ,
21 4aPmPn? + <a + C—“) (PP -&2,). (34)
o
552 + aCgM(an = S, Cor)
2o Bzo, (25 From the boundary condition at the platgd), taking into
account the corresponding leading-order equatigsse
Ref. [8])
_ =G, + amGy(aM + SynCan) , ,
Fa1= RN b1o(= 1) = hio(= 1) = o) = p(M) =0, (35

we obtain the conditions

h11(— 1) = P14(— 1) = ¢hp1(n) = yy(n) = 0. (36)

Hence, the coefficient§;; andD;; are eliminated by being

Gz scin _ s(an—sanc,m)B 27 expressed in terms d3;;. Then the substitution of the;;
217 1202mPn? 1202men2 20 @7 into thes corrections to the interfacial boundary conditions
(13)«(15) yield (similarly to Ref.[8]) the following system

aNS—S§nCun + am(bsfm
4aPmPn? 20

(26)

and of three nonhomogeneous linear equations for the three un-
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knownsBy,, B,;, andc; [cf. Egs.(3.16—3.18 of Ref. [8]]:

sz) ( s ) (1-m)sc,
a=—|By+|-a+ =5 By + =1
( [e% ozn2 m Cg

(37)

c, f
2By - 2MBy; —i—5 = = (38)

2 @’
iM 2m
(C_(Si -a?)-2a- Saca)> Bt ?(‘ an + 8,,Can)By1
0

S C
+il\/l(a+2a—+SaCa+(a2—S§)Blo>—;:f3, (39)
Co Co

where

Sacoz Suzncuzn Sa2
fi=|-1+ Eu+{-n+—— JExu-—Fy
a a

o

Son 25,Ca
+—Fu+{1- G
o o
Suzncom Si Sin
+ _n+2— nG21+ 2_H11+ 2n_H21, (40)
o o o
f,=6(aF 1, — amFy + Gy —mG,y), (41)
iM
fa= <C_(a —8,C,) 23§> Bt 2ms¢21nE21
0

iMs?
+ C_ + Z(a + Saca) Fll + 2m(an + Sancan)F21
0

iM

+ <_(23aca - a) + 4Ci> Gll
Co

iMs?

Co
+2mn(an + 2s,,C,n)Ho1. (42

+4mné, Gy + 2( +a+ Zsaca> Hig

We derived the above equations with the help of the com-
puter algebra systemAPLE. We also usediAPLE to solve
these algebraic equations numerically and thus find the iner-

tia e corrections—éc, for the phase velocity andté;; for

the eigenfunctions. The results are presented in the next _

section.

In contrast to our perturbation approach, Réf7] used a
numerical method to solve differential equatioii®). This

PHYSICAL REVIEW E 71, 016302(2005

IV. RESULTS
A. Long waves: Analytical results

In the long-wave limita®<D?, similar to Refs.[6] and
[7], we can simplify Eq(17) to the formD4¢>j0:0 which has
polynomial solutions found in Ref.7]. Since the functions
¢jo are fourth-degree polynomials, the general solution for
the inertial correction is a sixth-degree polynomial,

dia(y) = ~ley + Ejlyz + le)ﬁ + Ejly4 + Ejlys + éjlyG
(43

[cf. EqQ.(20)]. We find

~ 3c,mD; —s~9-
[ 0 0 0

o 60m?

~  sD
G, =19 44
1 som? (44

as the long-wave analog of Eq1)—(28). The boundary
conditions yield the following seven linear nonhomogeneous

equations for the seven unknow%l, ~521, 611, 621, 511,

D,4, andc; [with Elo, ~Bzo, andcy known from Ref.[7] (see
table 1 therg:

3y

Byt Cpy- Dpr= = (7cp+ 9Bro - — (45)
11 11 11— 60 0 10 60 20 ’
Byy—2Cy,+ 3Dy = (—5c +—ls>~B +}c +—1s
11 11 11— 12 0 15 10 2 0 20 ’
(46)
~ ~ ~  n*sn-7mg)~ s 3ng,
NB,; + N*Cyy + N°Dyy = + - :
B ¥ Mo+ Dz 6on? % 60M?  20m
(47)

n?(4sn—- 25mqy) .\ s’ ng
60m? 20m* 2m’
(48)

By, + 2”@1 + 3n2f)21 =

approach is less restrictive as regards the Reynolds number.

The perturbative solution provides for independent checks of
the numerical code of Refl7]. It also leads to some ques-
tions which do not naturally arise in the other approach— mrﬁ

~ (1-ms

Byy— By +i ¢, =0, (49

such as the question about the additivity property for the
growth rate discussed below. For the most part, the actual 3

results obtained in the two papers do not overlap. We say

more about this below.

3&2(E11 - mEﬁ - 6511 + Gmsz_"' %Cl = 0, (50)
0
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iMa~ ~ ~ Ma/~ s called the “surfactant mode” since it vanishes with the Ma-
- B11=2C;1 +2mGy — —5| Byo+ 2 |1 = 0. rangoni number,
Co Co Co
1iM(n-1
(5) oo LMO-D
4 m-1

We find that thes correction does not affect the stability of
the “mode 1” of Frenkel and Halperf7] (which can be Since the wavespeed correctiarti is purely real,

e _i(n—1)(3mn4+4m3n+4n5+n6+m3+3m2n2)Ms
“*17 480 (M2 =m)(n + 1)(m- 1)n?

a. (52)

For the other, “nonsurfactant mode”—which is continuously  One has to make sure that the consistency conditib®s
connected to the sole mode of YjB]—the ¢ correction to  are satisfied. Estimating the order of magnitudedgf in
the growth rate of the Frenkel and Halpgif insoluble-  terms of¢;, from Eq.(18), and taking into account the esti-
surfactant instability is exactly equal to the growth rate of themates forD? which follow from Eg.(20), viz., D>~ 1 for j

Yih [6] viscosity-jump instability:cy and the correctionsic;, =1 anda=<1, D?~a? for j=1 anda>1, D?~n~? for j=2
are given by and a=<n1, andD?~ o? for j=2 anda>n"!, the validity
conditions(19) become
_—2m-1)(n+Yn’s i(m-n*)eM 53 (19

°" 7 am-1y s

Re max(cy,s
and — | <1 55
‘a s max1,a?) (55)

i
iec, = — Wsmz(mm2 +m? + 6n°m+ 4n% + n*)(m - 1)n?s?

and
X (n® + 4mn’ + 8m?n® - 2nm + 8n°m?

- 4n®m+ 4n3m?® - 8nn?? 01
- 8n°n? + 2n°m° — 4nnt - m?), (54

where ¢=m+3mn+3n?+n® and ¢=m?+4mn+6mre+4mmn
+n* Thus, for the long-wave case, the growth rate is the sum
of independent contributions of the two instabilities, one due
to viscosity stratification and the other to the insoluble sur-
factant: y(M,Re =y(M,0)+ (0, Re.

This prediction made for the long-wave modes, which can -0.01
be called a “growth-rate additivity property,” is confirmed in @)
the long-wave limit of the general-case, arbitraryresults
presented below. On the other hand, for the shorter-wave
modes, the growth-rate additivity property breaks down, as
we discuss next. This question arises naturally in the pertur-
bation theory(but not in a numerical study such as that of
Ref. [17]).

-0.005 -

Growth rate, Im(c. ¢)

0 o 02 " 03

o
!

-5E-05 \
B. Computer-aided results for arbitrary wave numbers \

Growth rate, Im(c ¢)

The above statements regarding the additivity property for -0.0001 : : N :
the growth rate are illustrated by Fig. 2. It shows that ) 0 O e mumber. 03
the dispersion curve for given nonzero values of Marangoni ’
and Reynolds numbei®1,Re) is asymptotic to the sum of FIG. 2. Dispersion curves far=2, m=3.75, ands=Ca=2, for
the two growth rates, one for the valugsRe and the other  the two normal modega) the nonsurfactant mode aiio) the sur-
for (M,0), as the wave number approaches zero. Howeveractant mode. The solid lines show the growth raté,Re for
the two curves diverge as the wave number increases. This {#,Re=(1,0.3. For comparison, the dashed lines show the sum
the case for both the nonsurfactant and surfactant modes. of two growth rates;(0,0.3+(1,0).
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3_
4 2]
.
a > 1 '\\,\
8 N
£ e
E ] T
s 24 L
z u e
= 1 . : : .
0 0.25 0.5 0.75 1
(a) Re(¢)
o717 37 3
0 2 4 6 8 10
(a) Marangoni number, M 5] 2
1
> 1 /// 0
o B
4_ = -0.006 -0.004 -0.002 0
O_ _________________________ -3
5 P—
2 B S
E S 4 2 0 2 4 6
E (b) Im()
4
§ FIG. 4. The spanwise dependence of normal magigéy) and
¢;(y) for n=3, m=2, M=2, s=Ca=10, Re=0.5(a) the real parts
and (b) the imaginary parts. The solid lines correspondgg for
o 1 «=0.01, the dashed lines i, with «=0.01, the dash-dotted lines
o 2 4 6 8 1o to ¢jo with «=5, and the dash-double-dotted lines ¢p with «
(b) Marangoni number, M =5. The inset is a blow-up of the imaginary parts for0.01. Note

that some of thep; curves cannot be distinguished from theig
FIG. 3. Marginal stability curves fan=3, m=2,s=Ca=10, and  counterparts.
(@) Re=0 and(b) Re=0.5. “u” indicates the region of unstable
normal modes and “s” corresponds to the region of stability. The3(b) suggests that the mode responsible for the marginal sta-
nonzero critical valueM. of the Marangoni number, thdl-axis  bility is the surfactant mode. Similar considerations yield

intercept of the marginal curve, is due to inertia, R@. that the marginal curve in Fig. 5 corresponds to the nonsur-
factant mode. We note that the questions illustrated in Figs.
Re max(cy,sn/m) 2-5 are not studied in Refl17].
a———— | <1. (56) When inertia is taken into account, so that nonzero values
s mmax(n~4, a)

of the Reynolds number Re enter consideration, one can con-
We have checked that these conditions, as well as the condsider the marginal stability in the-Re plane. Figure 6 shows
tion |ec,/cy| <1, hold for the normal modes of Fig. 2. the effect of changing the viscosity ratio through a charac-
Figure 3 shows how the change from the zero to a nonteristic valuem=n?, at which the two disconnected branches
zero Reynolds number changes the curve of marginal stabibf the marginal curve become connected at the origin as
ity in the wave number—Marangoni number plane. The sigRe(m)— 0 whenm— n2, and then detach from the origin as
nificant effect of inertia is that the critical Marangoni number a single smooth marginal curve. Thus,rasncreases, there
for the instability, M. in Fig. 3(b), becomes nonzero. We is a change from three to two regions of alternating stability-
have observed thad#l. moves further away from zero as the instability. Note that in this figure, as well as in those below,
Reynolds number is increased. the (equa) parameters Ca arglare changing proportional to
Figure 4 illustrates the spanwise structure of a normaRe. This is because, along with Re, they are proportional to
mode, taking as an example the case of Fig.B&cause of the basic velocityJ;, and therefore change together with Re
the difference of scales, the curves corresponding to thé the material and geometrical parameters of the problem are
imaginary part of the normal mode with the smaller wavefixed. (Note the difference with Ref17] where the marginal
numbera=0.01 are properly seen only in the blow-up shownstability curves in thea-Re plane are plotted witls=Ca
as an inset of Fig. 4. =const) Figure &c) exhibits stability for all Reynolds num-
For the case witlm<<1 shown in Fig. 5, the only apparent bers shown there provided the wave number is sufficiently
effect of inertia is the widening of the wave number range ofsmall. Also, there is stability for all wave numbers covered
the long-wave insoluble-surfactant instability. In particular, provided the Reynolds number is sufficiently small.
the marginal wave number & =0, «q, is seen to increase In Fig. 7, we see a different change in the topology of the
with the Reynolds number. marginal curve as the viscosity ratio varies. The two
In view of the results of Ref8], the nonzero wave num- branches of the marginal curve approach each other until
ber value of the smalM limit of the marginal curve in Fig. there is one common point at which four pieces of the mar-
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FIG. 5. Same as Fig. 3 but for a viscosity ratio value smaller |
than 1, viz.,m=1/3. s
- | 5
ginal curve come together. Afterwards, the pieces separate E g1
again but now they are reconnected in a different arrange- ; u
ment. Checking the validity conditions, Eq&5) and (56), B S
shows that the reconnection region is at the limit of validity
for our approach. However, a similar reconnection has also
been observed in Refl7] (see their Fig. 8 The other type o+
of topological change, the fusion of the marginal curve, 0 1 2 3
shown in our Fig. 6, has not been reported in R&7] (pre- (c) Reynolds number, Re
sumably, simply because R¢1.7] did not focus its attention . N .
Finally, Fig. 8 shows a single-branehiRe marginal curve 2and Ca such thas/Re=Ca/Re=2/5, anda) m=1.439, (b)) m
for a case withm<1 =1.440, andc) m=1.441. The two disconnected regions of stability
coalesce into one aw increases past the critical value= n?, and
the two disconnected branches of the marginal curve coalesce at the
V. SUMMARY AND DISCUSSION origin of the a-Re plane.

We have shown that the effects of inertia on the insolubleThjs is in contrast to the surfactantless case of REf] in
surfactant instability are captured in successive approximayhich this property for inertia and Rayleigh-Taylor gravity
tions starting from the inertialess Stokes approximation, proeffects was found to hold for all wave numbers. If from that
vided the Reynolds number is sufficientlys determined by \work one were to get an impression that this growth-rate
the wave number and other parametemall. This requires  additivity property is a universal principle, similar to the su-
considering only an algebraic eigenvalue problem which isyerposition principle for linear equations, then the present
readily solved by using no more than a computer algebrgyork gives a counterexample. Of course, the stability equa-
system such asAPLE. The long-wave results are obtained tions are linear, and the superposition principle involving
analytically but a computer-aided solution is needed othersyms of thedisturbancesholds. But the sum of the growth
wise. In the long-wave limit, a growth-rate additivity prop- rates is a different matter. In general, the dispersion relation
erty holds in the sense that the growth raf&1,Re) is the s nonlinear and gives the growth rate as a complex function
sum of the two growth rateg(M, 0) + (0, Re; but, for non-  of the parameters, so there is no reason to expect the addi-
small-wave numbers, this property, in general, breaks dowrtivity property for the growth rates. Also, in the long-wave
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FIG. 7. Marginal stability curves fon=2, M=1.1, variables
and Ca such thas/Re=Ca/Re=2/5, ana) m=3.29 and(b) m
=3.3. The topology of the marginal curve changesnapasses
through a characteristic value located between 3.29 and 3.3.

limit, the first inertia correction to the growth rate® which
our consideration is confined herie zero for the surfactant
mode, but is not vanishing for the other, nonsurfactant mod
(the latter is the only mode existing when no surfactants ar
present, as in Refd6] and [11]). In the limit of a clean

interface, the results of Refl1] hold. ) ; . g
We have studied the change in the marginal stabili/2Symptotic equation forc, the imaginary part of the
curves in the wave number—Marangoni number plane as th¥avespeed, was given, Egk.14) there.(Note that there was
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=Ca/Re=2/5.
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Reynolds number is changed from zero to a nonzero value.
The significant result for the viscosity ratio> 1 (for several
values ofm that we studieylis that the critical Marangoni
number changes from zero to a nonzero value. Thus, the flow
is stable for all wave numbers when the Marangoni humber
is sufficiently small. For the opposite case<1, the only
change seems to be the widening of the wave number range
of the long-wave instability.

When the nonzero values of the Reynolds number are
brought into consideration, we can look for the marginal
curves in the wave number—Reynolds number plamgich
of course does not exist for the inertialess gasarying the
viscosity ratio, we have observed changes in the topology of
the marginal curves at certain characteristic values. Thus, at
m=n?, the two branches of the marginal curve, one with the
Reynolds-number intercept equal to zero and the other with a
nonzero intercept Re become connected as Re0 when
m—n?. For m>n?, the marginal curve detaches from the
origin as a single smooth curve. As a result, for-n?, the
flow is stable for all wave numbers if the Reynolds number is
sufficiently small; also, it is stable for all Reynolds numbers
provided the wave number is sufficiently small.

A different change in the topology of the marginal curve
has been observed for larger valuesfFor those, asn is
increased, at some characteristic valumg<n?, the two
branches come into contact at some point bounded away
from the origin, and then aw is further increased, two new,
reconnected marginal branches separate and move apart.
This type of change of the marginal curve has also been
observed in Ref[17].

These perturbative results are subject to the validity con-
ditions, Eq.(55) and (56). For cases in whiciln~1 andm
~1, and alsacy=<s, the two conditions simplify to become

éust one,aRe/maxl,a?) <1, which meansy Re<1 for a

<1 and Rek <1 for a>1. We note that for the cases with

e

M=1, there is a difficulty in satisfying the conditiori§5)
and(56) for large wave numbers. In Rg#8], the short-wave

a misprint: the lasin in the first line should b&1.) The two
solutions werec;=—M/[2(m+1)] andc,=-1. With this, Eq.
(A2) of Ref. [8] yields the real partg, and it turns out to
contain(M-1) in the denominator. Thugg| —~ asM — 1.
As a result, conditiong55) and(56) are inevitably violated.
It remains an open question why the pdiht1 should be so
peculiar.

As has already been mentioned above, the numerical ap-
proach of Ref[17] has less restrictive validity constraints.
Our computer-aided approach has the advantage that it is
easier to check the results and to extend the investigation to
other parameter values, since one does not have to create a
computer program which was necessary for the approach of
Ref. [17]. We believe that the two approaches complement
each other.
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